Consider the following decimal expansions:
$$\begin{aligned}
\textstyle \frac{1}{ 1 } &= 1.0 &
\textstyle \frac{1}{ 11 } &= 0.[09] &
% 0.09090909090909091 \\
\textstyle \frac{1}{ 21 } &= 0.[04761\,9] \\
% 0.047619047619047616 \\
%
\textstyle \frac{1}{ 2 } &= 0.5 &
\textstyle \frac{1}{ 12 } &= 0.08[3] &
% 0.08333333333333333 \\
\textstyle \frac{1}{ 22 } &= 0.0[45] \\
% 0.045454545454545456 \\
%
\textstyle \frac{1}{ 3 } &= 0.[3] &
% 0.3333333333333333 \\
\textstyle \frac{1}{ 13 } &= 0.[07692\,3] &
% 0.07692307692307693 \\
\textstyle \frac{1}{ 23 } &= 0.[04347\,82608\,69565\,21739\,13] \\
% 0.043478260869565216 \\
%
\textstyle \frac{1}{ 4 } &= 0.25 &
\textstyle \frac{1}{ 14 } &= 0.0[71428\,5] &
% 0.07142857142857142 \\
\textstyle \frac{1}{ 24 } &= 0.041[6] \\
% 0.041666666666666664 \\
%
\textstyle \frac{1}{ 5 } &= 0.2 &
\textstyle \frac{1}{ 15 } &= 0.0[6] &
% 0.06666666666666667 \\
\textstyle \frac{1}{ 25 } &= 0.04 \\
%
\textstyle \frac{1}{ 6 } &= 0.1[6] &
% 0.16666666666666666 \\
\textstyle \frac{1}{ 16 } &= 0.0625 &
\textstyle \frac{1}{ 26 } &= 0.0[38461\,5] \\
% 0.038461538461538464 \\
%
\textstyle \frac{1}{ 7 } &= 0.[14285\,7] &
% 0.14285714285714285 \\
\textstyle \frac{1}{ 17 } &= 0.[05882\,35294\,11764\,7] &
% 0.058823529411764705 \\
\textstyle \frac{1}{ 27 } &= 0.[037] \\
% 0.037037037037037035 \\
%
\textstyle \frac{1}{ 8 } &= 0.125 &
\textstyle \frac{1}{ 18 } &= 0.0[5] &
% 0.05555555555555555 \\
\textstyle \frac{1}{ 28 } &= 0.035[71428\,5] \\
% 0.03571428571428571 \\
%
\textstyle \frac{1}{ 9 } &= 0.[1] &
% 0.1111111111111111 \\
\textstyle \frac{1}{ 19 } &= 0.[05263\,15789\,47368\,421] &
% 0.05263157894736842 \\
\textstyle \frac{1}{ 29 } &= 0.[03448\,27586\,20689\,65517\,24137\,931] \\
% 0.034482758620689655 \\
%
\textstyle \frac{1}{ 10 } &= 0.1 &
\textstyle \frac{1}{ 20 } &= 0.05 &
\textstyle \frac{1}{ 30 } &= 0.0[3] \\
% 0.03333333333333333 \\
\end{aligned}$$
Each of these either terminates, like $\frac18 = 0.125$, or repeats,
like $\frac{1}{27} = 0.[037]$. What determines the length of these
repeating sequences?
Read more…